Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 242(10): 1095-1103, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28361585

RESUMO

Cardiac arrest (CA) and cardiocerebral resuscitation (CCR)-induced ischemia-reperfusion imposes oxidative and carbonyl stress that injures the brain. The ischemic shift to anaerobic glycolysis, combined with oxyradical inactivation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), provokes excessive formation of the powerful glycating agent, methylglyoxal. The glyoxalase (GLO) system, comprising the enzymes glyoxalase 1 (GLO1) and GLO2, utilizes reduced glutathione (GSH) supplied by glutathione reductase (GR) to detoxify methylglyoxal resulting in reduced protein glycation. Pyruvate, a natural antioxidant that augments GSH redox status, could sustain the GLO system in the face of ischemia-reperfusion. This study assessed the impact of CA-CCR on the cerebral GLO system and pyruvate's ability to preserve this neuroprotective system following CA. Domestic swine were subjected to 10 min CA, 4 min closed-chest CCR, defibrillation and 4 h recovery, or to a non-CA sham protocol. Sodium pyruvate or NaCl control was infused (0.1 mmol/kg/min, intravenous) throughout CCR and the first 60 min recovery. Protein glycation, GLO1 content, and activities of GLO1, GR, and GAPDH were analyzed in frontal cortex biopsied at 4 h recovery. CA-CCR produced marked protein glycation which was attenuated by pyruvate treatment. GLO1, GR, and GAPDH activities fell by 86, 55, and 30%, respectively, after CA-CCR with NaCl infusion. Pyruvate prevented inactivation of all three enzymes. CA-CCR sharply lowered GLO1 monomer content with commensurate formation of higher molecular weight immunoreactivity; pyruvate preserved GLO1 monomers. Thus, ischemia-reperfusion imposed by CA-CCR disabled the brain's antiglycation defenses. Pyruvate preserved these enzyme systems that protect the brain from glycation stress. Impact statement Recent studies have demonstrated a pivotal role of protein glycation in brain injury. Methylglyoxal, a by-product of glycolysis and a powerful glycating agent in brain, is detoxified by the glutathione-catalyzed glyoxalase (GLO) system, but the impact of cardiac arrest (CA) and cardiocerebral resuscitation (CCR) on the brain's antiglycation defenses is unknown. This study in a swine model of CA and CCR demonstrated for the first time that the intense cerebral ischemia-reperfusion imposed by CA-resuscitation disabled glyoxalase-1 and glutathione reductase (GR), the source of glutathione for methylglyoxal detoxification. Moreover, intravenous administration of pyruvate, a redox-active intermediary metabolite and antioxidant in brain, prevented inactivation of glyoxalase-1 and GR and blunted protein glycation in cerebral cortex. These findings in a large mammal are first evidence of GLO inactivation and the resultant cerebral protein glycation after CA-resuscitation, and identify novel actions of pyruvate to minimize protein glycation in postischemic brain.


Assuntos
Encéfalo/patologia , Parada Cardíaca/terapia , Fármacos Neuroprotetores/administração & dosagem , Aldeído Pirúvico/toxicidade , Ácido Pirúvico/administração & dosagem , Traumatismo por Reperfusão/prevenção & controle , Ressuscitação/efeitos adversos , Animais , Córtex Cerebral/patologia , Modelos Animais de Doenças , Glutationa Redutase/análise , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/análise , Glicosilação , Lactoilglutationa Liase/análise , Estresse Oxidativo , Suínos , Resultado do Tratamento
2.
Exp Biol Med (Maywood) ; 240(12): 1774-84, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26088865

RESUMO

Cardiac electromechanical dysfunction may compromise recovery of patients who are initially resuscitated from cardiac arrest, and effective treatments remain elusive. Pyruvate, a natural intermediary metabolite, energy substrate, and antioxidant, has been found to protect the heart from ischemia-reperfusion injury. This study tested the hypothesis that pyruvate-enriched resuscitation restores hemodynamic, metabolic, and electrolyte homeostasis following cardiac arrest. Forty-two Yorkshire swine underwent pacing-induced ventricular fibrillation and, after 6 min pre-intervention arrest, 4 min precordial compressions followed by transthoracic countershocks. After defibrillation and recovery of spontaneous circulation, the pigs were monitored for another 4 h. Sodium pyruvate or NaCl were infused i.v. (0.1 mmol·kg(-1)·min(-1)) throughout precordial compressions and the first 60 min recovery. In 8 of the 24 NaCl-infused swine, the first countershock converted ventricular fibrillation to pulseless electrical activity unresponsive to subsequent countershocks, but only 1 of 18 pyruvate-treated swine developed pulseless electrical activity (relative risk 0.17; 95% confidence interval 0.13-0.22). Pyruvate treatment also lowered the dosage of vasoconstrictor phenylephrine required to maintain systemic arterial pressure at 15-60 min recovery, hastened clearance of excess glucose, elevated arterial bicarbonate, and raised arterial pH; these statistically significant effects persisted up to 3 h after sodium pyruvate infusion, while infusion-induced hypernatremia subsided. These results demonstrate that pyruvate-enriched resuscitation achieves electrocardiographic and hemodynamic stability in swine during the initial recovery from cardiac arrest. Such metabolically based treatment may offer an effective strategy to support cardiac electromechanical recovery immediately after cardiac arrest.


Assuntos
Antioxidantes/uso terapêutico , Eletrocardiografia/efeitos dos fármacos , Parada Cardíaca/tratamento farmacológico , Hemodinâmica/efeitos dos fármacos , Ácido Pirúvico/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Reanimação Cardiopulmonar/métodos , Feminino , Parada Cardíaca/complicações , Parada Cardíaca/fisiopatologia , Hiperglicemia/etiologia , Hiperglicemia/prevenção & controle , Hipernatremia/etiologia , Hipernatremia/prevenção & controle , Infusões Intravenosas , Masculino , Oxirredução/efeitos dos fármacos , Ácido Pirúvico/administração & dosagem , Suínos , Vasoconstritores/administração & dosagem , Vasoconstritores/uso terapêutico
3.
World J Crit Care Med ; 4(1): 1-12, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25685718

RESUMO

Cardiac arrest remains a leading cause of death and permanent disability worldwide. Although many victims are initially resuscitated, they often succumb to the extensive ischemia-reperfusion injury inflicted on the internal organs, especially the brain. Cardiac arrest initiates a complex cellular injury cascade encompassing reactive oxygen and nitrogen species, Ca(2+) overload, ATP depletion, pro- and anti-apoptotic proteins, mitochondrial dysfunction, and neuronal glutamate excitotoxity, which injures and kills cells, compromises function of internal organs and ignites a destructive systemic inflammatory response. The sheer complexity and scope of this cascade challenges the development of experimental models of and effective treatments for cardiac arrest. Many experimental animal preparations have been developed to decipher the mechanisms of damage to vital internal organs following cardiac arrest and cardiopulmonary resuscitation (CPR), and to develop treatments to interrupt the lethal injury cascades. Porcine models of cardiac arrest and resuscitation offer several important advantages over other species, and outcomes in this large animal are readily translated to the clinical setting. This review summarizes porcine cardiac arrest-CPR models reported in the literature, describes clinically relevant phenomena observed during cardiac arrest and resuscitation in pigs, and discusses numerous methodological considerations in modeling cardiac arrest/CPR. Collectively, published reports show the domestic pig to be a suitable large animal model of cardiac arrest which is responsive to CPR, defibrillatory countershocks and medications, and yields extensive information to foster advances in clinical treatment of cardiac arrest.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25478289

RESUMO

OBJECTIVE: Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. DESCRIPTION: We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. METHODS: After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at -20 cm H2O for 30 min. RESULTS: When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, P<0.001). By 30 min, the split drain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. CONCLUSION: The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications.

5.
Age (Dordr) ; 36(4): 9680, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25104136

RESUMO

Cardiac arrest is a leading cause of death and permanent disability. Most victims succumb to the oxidative and inflammatory damage sustained during cardiac arrest/resuscitation, but even survivors typically battle long-term neurocognitive impairment. Although extensive research has delineated the complex mechanisms that culminate in neuronal damage and death, no effective treatments have been developed to interrupt these mechanisms. Of importance, many of these injury cascades are also active in the aging brain, where neurons and other cells are under persistent oxidative and inflammatory stress which eventually damages or kills the cells. In light of these similarities, it is reasonable to propose that the brain essentially ages the equivalent of several years within the few minutes taken to resuscitate a patient from cardiac arrest. Accordingly, cardiac arrest-resuscitation models may afford an opportunity to study the deleterious mechanisms underlying the aging process, on an accelerated time course. The aging and resuscitation fields both stand to gain pivotal insights from one another regarding the mechanisms of injury sustained during resuscitation from cardiac arrest and during aging. This synergism between the two fields could be harnessed to foster development of treatments to not only save lives but also to enhance the quality of life for the elderly.


Assuntos
Envelhecimento , Parada Cardíaca/patologia , Neurônios/patologia , Estresse Oxidativo , Animais , Parada Cardíaca/metabolismo , Humanos , Neurônios/metabolismo
6.
Exp Biol Med (Maywood) ; 239(11): 1461-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24595981

RESUMO

Ischemic brain injury inflicted by stroke and cardiac arrest ranks among the leading causes of death and long-term disability in the United States. The brain consumes large amounts of metabolic substrates and oxygen to sustain its energy requirements. Consequently, the brain is exquisitely sensitive to interruptions in its blood supply, and suffers irreversible damage after 10-15 min of severe ischemia. Effective treatments to protect the brain from stroke and cardiac arrest have proven elusive, due to the complexities of the injury cascades ignited by ischemia and reperfusion. Although recombinant tissue plasminogen activator and therapeutic hypothermia have proven efficacious for stroke and cardiac arrest, respectively, these treatments are constrained by narrow therapeutic windows, potentially detrimental side-effects and the limited availability of hypothermia equipment. Mounting evidence demonstrates the cytokine hormone erythropoietin (EPO) to be a powerful neuroprotective agent and a potential adjuvant to established therapies. Classically, EPO originating primarily in the kidneys promotes erythrocyte production by suppressing apoptosis of proerythroid progenitors in bone marrow. However, the brain is capable of producing EPO, and EPO's membrane receptors and signaling components also are expressed in neurons and astrocytes. EPO activates signaling cascades that increase the brain's resistance to ischemia-reperfusion stress by stabilizing mitochondrial membranes, limiting formation of reactive oxygen and nitrogen intermediates, and suppressing pro-inflammatory cytokine production and neutrophil infiltration. Collectively, these mechanisms preserve functional brain tissue and, thus, improve neurocognitive recovery from brain ischemia. This article reviews the mechanisms mediating EPO-induced brain protection, critiques the clinical utility of exogenous EPO to preserve brain threatened by ischemic stroke and cardiac arrest, and discusses the prospects for induction of EPO production within the brain by the intermediary metabolite, pyruvate.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Eritropoetina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Humanos , Estados Unidos
7.
Am J Physiol Regul Integr Comp Physiol ; 306(1): R61-6, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24259463

RESUMO

The purpose of this study was to determine whether neurons within the nucleus tractus solitarius (NTS) that express the mineralocorticoid receptor (MR) play a role in aldosterone stimulation of salt intake. Adult Wistar-Kyoto (WKY) rats received microinjections into the NTS of a short-hairpin RNA (shRNA) for the MR, to site specifically reduce levels of the MR by RNA interference (shRNA; n = 9) or scrambled RNA as a control (scRNA; n = 8). After injection of the viral construct, aldosterone-filled osmotic minipumps were implanted subcutaneously and connected to a cannula extending into the fourth ventricle to infuse aldosterone at a rate of 25 ng/h. Before and after surgeries, rats had ad libitum access to normal sodium (0.26%) rat chow and two graduated drinking bottles filled with either distilled water or 0.3 M NaCl. Before the surgeries, basal saline intake was 1.6 ± 0.6 ml in the scRNA group and 1.56 ± 0.6 ml in the shRNA group. Twenty-four days postsurgery, saline intake was elevated to a greater extent in the scRNA group (5.9 ± 1.07 ml) than in the shRNA group (2.41 ± 0.6 ml). Post mortem immunohistochemistry revealed a significant reduction in the number of NTS neurons exhibiting immunoreactivity for MR in shRNA-injected rats (23 ± 1 cells/section) versus scRNA-injected rats (33 ± 2 cells/section; P = 0.008). shRNA did not alter the level of 11-ß-hydroxysteroid dehydrogenase type II (HSD2) protein in the NTS as judged by the number of HSD2 immunoreactive neurons. These results suggest that fourth ventricular infusions of aldosterone stimulate saline intake, and that this stimulation is at least in part mediated by hindbrain NTS neurons that express MR.


Assuntos
Aldosterona/farmacologia , Receptores de Mineralocorticoides/metabolismo , Cloreto de Sódio/metabolismo , Núcleo Solitário/efeitos dos fármacos , Aldosterona/administração & dosagem , Animais , Quarto Ventrículo/efeitos dos fármacos , Quarto Ventrículo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Endogâmicos WKY , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/metabolismo , Núcleo Solitário/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...